Wear

- **Modes of wear:**
 - 1 = between two primary bearing surfaces (intended)
 - 2 = between a primary bearing surface against a secondary surface (unintended)
 - 3 = two primary bearing surfaces interposed with a 3rd body
 - 4 = two non-bearing surfaces rubbing together

- **Mechanisms of wear:**
 - Abrasive wear = harder substances asperities cut into softer material
 - Adhesive wear = intermolecular bonds form between two opposing surfaces that are greater than cohesive force within one of the material resulting in shear fracture.
 - Fatigue wear (delamination) – subsurface fatigue failure resulting in cracks and delamination. Caused by macro-asperities on UHMWPE two orders greater than asperities on metal, which are plastically deformed by loading resulting in local stress concentrations above the yield point of UHMWPE. (e.g. in TKR)

- **Measurement of wear:**
 - Volumetric = volume of material detached from the surface of a material as result of wear (e.g. direct measurement of explanted cups)
 - Linear = loss of height of the bearing surface (e.g. cup penetration in vivo)

- **Law of wear:** volume of material (V) removed by wear is proportional to load (L) and sliding distance (x), but inversely proportional to the hardness of the softer material (H).

 \[V \propto \frac{Lx}{H} \]

 explains why volumetric wear greater with larger femoral heads

- **Patient factors in wear:**
 - Weight (applied load)
 - Age and activity (rate of load, cycles)

- **Implant factors in wear:**
 - Reduced offset of prosthesis will reduce joint reaction force
 - Coefficient of friction of materials
 - Roughness (surface finish)
 - Toughness (ability to absorb energy and deform plastically before fracture)
 - Hardness (measure of resistance to permanent change)
 - Thickness of UHMWPE > 8mm (less creep, wear and contact stress)
 - Sliding distance
 - Endurance limit
 - Surface damage
 - Presence of 3rd bodies or modularity
Processing of UHHWPE – ram extrusion has greater linear wear than compression moulding (0.11 mm/yr vs. 0.05 mm/yr); gamma sterilisation in air or vacuum.

- Consequences of wear:
 - Synovitis
 - Osteolysis (loosening)
 - Systemic distribution
 - Immune reaction
 - Increased friction of joint
 - Misalignment and catastrophic failure

Reducing linear and volumetric wear, along with particle numbers and size.